В переводе на общедоступный язык, это означает, что любой трёхмерный объект, например, стакан можно преобразовать в шар путём одной только деформации, то есть его не нужно будет ни разрезать, ни склеивать. Иными словами, Пуанкаре предположил, что пространство не трёхмерно, а содержит значительно большее число измерений, а Перельман спустя 100 лет математически это доказал.
Для начала заметим, что обычная сфера, которая есть поверхность обычного шара, двумерна (а сам шар — тот трёхмерен). Двумерная сфера состоит из всех точек трёхмерного пространства, равноудалённых от некоторой выделенной точки, называемой центром и сфере не принадлежащей. Трёхмерная сфера состоит из всех точек четырёхмерного пространства, равноудалённых от своего центра (сфере не принадлежащего). В отличие от двумерных сфер трёхмерные сферы недоступны нашему непосредственному наблюдению, и нам представить себе их так же трудно, как Василию Ивановичу из известного анекдота квадратный трёхчлен. Не исключено, однако, что все мы как раз в трёхмерной сфере и находимся, то есть что наша Вселенная является трёхмерной сферой. В этом состоит значение результата Перельмана для физики и астрономии. Термин “односвязное компактное трёхмерное многообразие без края” содержит указания на предполагаемые свойства нашей Вселенной. Термин “гомеоморфно” означает некую высокую степень сходства, в известном смысле неотличимость.
Формулировка в целом означает, следовательно, что если наша Вселенная обладает всеми свойствами односвязного компактного трёхмерного многообразия без края, то она — в том же самом “известном смысле” — и есть трёхмерная сфера."
Если совсем просто - то:
1. Имеем воздушный шарик БЕЗ дырки, через которую происходит его надувание - аналог трехмерной сферы.
2. Имеем полое замкнутое тело, например, тарелку, стакан, куб, карандаш, дверь без ручек.
Необходимо доказать, что поверхность этого тела топологически является аналогом сферы, т.е. после проведения определённых деформаций, не вызывающих разрывов данной поверхности, поверхность принимает форму сферы и на этой поверхности действуют те же математические законы, что и на сфере, описываемые теми же функциями в топологии.
Доказательство "для чайников": помещаем тело внутрь нашего воздушного шарика, откачиваем воздух - шарик принимает форму поверхности данного тела, при этом оставаясь шариком, т.е. сферой, для которой по прежнему применимы те же законы, что и для сферы до её деформации.
Если же посложнее - то если возможно установить однозначное соответствие между точками сферы и точками некой трехмерной поверхности с сохранением условия непрерывности, т.е. соседства точек на поверхности и на сфере - для этой поверхности применимы законы, применимые для сферы.
Примерно так:)
Дмитрий Кулешов Авиаконструктор, ЧГКшник, джипер., Ulan-Ude
Исключительная важность гипотезы, выдвинутой около века назад математиком Пуанкаре, касается трёхмерных структур и является ключевым элементом современных исследований основ мироздания. Загадка эта, по мнению специалистов института Клэя, одна из семи принципиально важных для развития математики будущего.
Приведем толкование остальных терминов, фигурирующих в формулировке гипотезы:
- Топология - (от греч. topos - место и logos - учение) - раздел математики, изучающий топологические свойства фигур, т.е. свойства, не изменяющиеся при любых деформациях, производимых без разрывов и склеиваний (точнее, при взаимно однозначных и непрерывных отображениях). Примерами топологических свойств фигур являются размерность, число кривых, ограничивающих данную область, и т.д. Так, окружность, эллипс, контур квадрата имеют одни и те же топологические свойства, т.к. эти линии могут быть деформированы одна в другую описанным выше образом; в то же время кольцо и круг обладают различными топологическими свойствами: круг ограничен одним контуром, а кольцо - двумя.
- Гомеоморфизм (греч. ομοιο - похожий, μορφη - форма) – взаимно однозначное соответствие между двумя топологическим пространствами, при котором оба взаимно обратных отображения, определяемые этим соответствием, непрерывны. Эти отображения называют гомеоморфными, или топологическими отображениями, а также гомеоморфизмами, а о пространствах говорят, что они принадлежат одному топологическому типу называются гомеоморфными, или топологически эквивалентными.
- Трёхмерное многообразие без края. Это такой геометрический объект, у которого каждая точка имеет окрестность в виде трёхмерного шара. Примерами 3-многообразий может служить, во-первых, всё трехмерное пространство, обозначаемое R3 , а также любые открытые множества точек в R3 , к примеру, внутренность полнотория (бублика). Если рассмотреть замкнутое полноторие, т.е. добавить и его граничные точки (поверхность тора), то мы получим уже многообразие с краем – у краевых точек нет окрестностей в виде шарика, но лишь в виде половинки шарика.
- Полното́рие (полното́рий) — геометрическое тело, гомеоморфное произведению двумерного диска и окружности D2 * S1. Неформально, полноторие — бублик, тогда как тор — только его поверхность (пустотелая камера колеса).
- Односвязное. Оно означает, что любую непрерывную замкнутую кривую, расположенную целиком в пределах данного многообразия, можно плавно стянуть в точку, не покидая этого многообразия. Например, обычная двумерная сфера в R3 односвязна (кольцевую резинку, как угодно приложенную к поверхности яблока, можно плавной деформацией стянуть в одну точку, не отрывая резинки от яблока). С другой стороны, окружность и тор неодносвязны.
- Компактное. Многообразие компактно, если любой его гомеоморфный образ имеет ограниченные размеры. Например, открытый интервал на прямой (все точки отрезка, кроме его концов) некомпактен, так как его можно непрерывно растянуть до бесконечной прямой. А вот замкнутый отрезок (с концами) является компактным многообразием с краем: при любой непрерывной деформации концы переходят в какие-то определённые точки, и весь отрезок обязан переходить в ограниченную кривую, соединяющую эти точки.
Ильназ Башаров https://allatra-science.org/publication/teorema-puankare-gregory-perelman